

ENDCAP Alignment

ANALOG INTERFACE BOARD

User's Manual

FNAL – PNPI 2003

1. Introduction

The analog interface board provides a stable 11.3 V voltage for the R-sensors LPX50 and Z-sensors ETI LCP8S-10, connection of the biaxial inclinometer ApGeo 900, R-, and Z-sensors to a voltmeter, cross-connection of temperature (T) sensors, and low voltage distribution for lasers. No control is required for this board.

2. Construction

The analog interface board has seven connectors:

- J1 6-port RJ11 jack for connection: Port 1 – the biaxial inclinometer Port 2 – Z1 sensor Port 3 – Z2 sensor Port 4 – R1 sensor Port 5 – R2 sensor Port 6 – T1 sensor
- J2 4-port RJ11 jack

Port 1 – Laser Output (This station)

- Port 2 Laser Input
- Port 3 T2 + T3 Input Port 4 - T Output (T1 + T2 + T3)
- J3 RJ11 jack Laser Output to the next station
- J4, J5 Low voltage distribution connectors
- J6 3M 20-pin header Output to a voltmeter
- J7 RJ11 jack R3 sensor (used for ME1 only)

The analog interface board has four switches performed as pin strips controlled by shunts (jumpers):

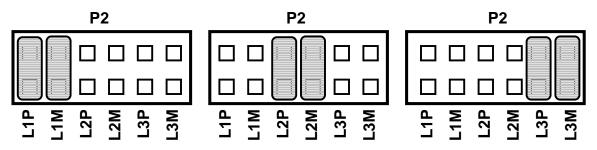
- P1 Select the input voltage for the Z1 sensor One shunt is used **always**
- P2 Connect Z2 input voltage to the output connector J6 Two shunts are used **simultaneously**. If connection is not required, both shunts should be placed to a single pin of the same switch.

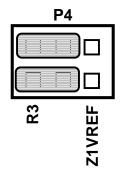
- P3 Select the current board laser output Two shunts are used **always**
- P4 Select a source for the channel 4 at the output connector J6 (pins 7, 8): Z1 reference voltage or R3 sensor. Two shunts are used **always**.

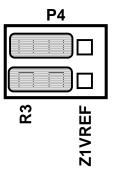
3. Circuit Diagram

The analog interface board consists of the low drop output (LDO) voltage regulator and cross-connection circuitry. Voltage regulator is performed in LT1761 U1 integrated circuit with external resistive divider R1, R2 that determines the output voltage as 11.2 V. Red LED indicates a presence of the regulated voltage.

4. Application Notes


1. Admissible positions of shunt at the P1 switch are the following (any other position is prohibited):


2. Admissible positions of shunts at the P1 switch are the following (any other position is prohibited):



3. Admissible positions of shunt at the P1 switch are the following (any other position is prohibited):

4. Admissible positions of shunt at the P1 switch are the following (any other position is prohibited):

5. Functioning

The analog interface board is a passive device representing a cross-connection board with internal voltage regulator. It works properly if all settings and connections are correct.

6. Debugging and Testing

Necessary equipment:

- o Digital voltmeter
- \circ 12 15 V power supply
- Power cable for analog interface board

Properly manufactured analog interface boards do not require any adjustments and should work correct at once.

- 1. Check the assembled board visually. It must not have visible damages. All components and their values must be in accordance with documents.
- 2. Connect the analog interface board under test to the power supply 12 15 V and turn on it. Check an input voltage after the F1 and F2 fuses; replace them if necessary.
- 3. Check +11.3V output voltage of the LDO voltage regulator.
- 4. A complete test of the analog alignment DAQ including the analog interface board must be performed before a final assembly.

7. Troubleshooting and Maintenance

Output voltage of the voltage regulator is wrong.

- Check an input voltage; it should be 12 15 V.
- Check a fuse F2; replace it if necessary.
- Check values of the R1 and R2 resistors.
- Check polarity of the C6, C8, and C9 tantalum capacitors (a white band marks a **positive** pad).
- If the previous checks do not discover a reason of failure, replace the U1 LTC11761 integrated circuit.

8. Specification

General

Dimensions of the board	6.7" x 2.9"
Input connector J1	6-port RJ11 jack
Input/output connector J2	4-port RJ11 jack
Output connector J3	RJ11 jack
Power connectors J4, J5	2-pin Molex Sabre 43160-3102
Output connector J6	20-pin 3M header 3428-6002
Switch P1	3-pin single raw strip 3M 929647-09-36-I
	(modified) with shunt 3M 929957-08
Switch P2	2 x 2 double raw strip 3M 929665-09-36-I
	(modified) with shunts 3M 929957-08
Switch P3	6 x 2 double raw strip 3M 929665-09-36-I
	(modified) with shunts 3M 929957-08

Power characteristics

Minimum input voltage	+12 V
Maximum input voltage	+15 V
Output regulated voltage	+11.2 V
Power consumption:	480 mW with entire sensor set
Current consumption:	
Inclinometer	7 mA
R-sensors	$2 \ge 1.13 = 2.26 \text{ mA}$
Z-sensors	$2 \ge 11.3 = 22.6 \text{ mA}$
On board power protection:	
Two fuses	0.5 A
LT1761 voltage regulate	or has overcurrent and overtemperature protection

Specification of connectors

Connector J1 port 1 (Inclinometer Input):

Pin	Name
1	V _X
2	$GND(V_X)$
3	V _Y
4	$GND(V_Y)$
5	V _{IN}
6	GND

Connector J1 ports 2 – 5 (Z1, Z2, R1, R2):

Pin	Name
1	V _{WIPER}
2	GND (W V _{WIPER})
3	V _{REF}
4	GND (V _{REF})
5	V _{IN}
6	GND

Connector J1 port 6 (T1 Input):

Pin	Name
1	
2	
3	
4	
5	T1-
6	T1+

Connector J2 port 1 (Laser Out):

Pin	Name
1	
2	
3	Laser Output +
4	Laser Output -
5	
6	

Connector J2 port 2 (Laser Input):

Pin	Name
1	Laser 1 Input +
2	Laser 1 Input -
3	Laser 2 Input +
4	Laser 2 Input -
5	Laser 3 Input +
6	Laser 3 Input -

Pin	Name
1	T2-
2	T2+
3	Т3-
4	T3+
5	
6	

Connector J2 port 4 (T Output):

Pin	Name
1	T1-
2	T1+
3	T2-
4	T2+
5	Т3-
6	T3+

Connector J3 (Laser Output to the next station):

Pin	Name
1	Laser 1 Output +
2	Laser 1 Output -
3	Laser 2 Output +
4	Laser 2 Output -
5	Laser 3 Output +
6	Laser 3 Output -

Connectors J4, J5 (Low voltage distribution):

Pin	Name
1	PWR
2	GND

Output connector J6:

Name	Pin	Pin	Name
V _X	1	2	$GND(V_X)$
V _Y	3	4	$GND(V_Y)$
V _{Z1W}	5	6	$GND(V_{Z1W})$
V_{Z1R} or V_{R3}^*	7	8	GND $(V_{Z1R} \text{ or } V_{R3})^*$
V _{Z2W}	9	10	GND (V _{Z2W})
V _{R1W}	11	12	$GND(V_{R1W})$
V _{R1R}	13	14	$GND(V_{R1R})$
V _{R2W}	15	16	GND (V _{R2W})
V _{R2R}	17	18	GND (V _{R2R})
<v<sub>Z2R>**</v<sub>	19	20	<[GND (V _{Z2R})> ^{**}

* **

Selected by P4 If P2 shunts are inserted

Connector J7 (R3):

Pin	Name
1	V _{WIPER}
2	GND (V _{WIPER})
3	
4	
5	V _{IN}
6	GND

Fig. 1. The analog interface board